Autonomous Quadrotor Control

Rainer Trummer

Software Systems Seminar '07 Department of Computer Sciences University of Salzburg, Austria

Computational Systems Group

The JAviator Project

- Collaborative research project of the
 - Computational Systems Group, Department of Computer Sciences, University of Salzburg
 - IBM T. J. Watson Research Center, Hawthorne, New York, USA
- Primary project goals are to
 - develop high-level real-time and concurrent programming abstractions for Java
 - Provide an infrastructure that is time-portable
 - verify system on UAV (unmanned aerial vehicle)

Design and build elaborate UAV platform

Develop Java-based real-time control system

• Provide required Java real-time capabilities

Provide time-portability among platforms

• Verify entire system to achieve project goals

The JAviator V1

- Quadrotor model helicopter
 - built of high-quality materials like carbon fiber, aircraft aluminium, and medical titanium
 - equipped with custom-made 3-phase motors

- Bicycle-wheel concept
 - > as underlying frame design pattern
 - offers extremely high mechanical stability
 - enables the usage of very thin and light materials

Basic Components

University of Salzburg

Machined Components

Rainer Trummer

3-Blade Rotor Design

JAviator V1 / V2 Rotor

JAviator V1 vs. JAviator V2

V2 Connecting Parts

V2 Rotor-Arm Design

V2 Rotor-Arm Design

Electronic Components

- 3-phase motors:
 - 20mm height
 - 35mm diameter
 - 250W max power
 (17A at 15V DC)

Electronic Components

MicroStrain 3DM-GX1 Gyro Sensor

Dimetix LSM2-15 Laser Sensor (front)

Jeti SPIN 33 Motor Controller

Dimetix LSM2-15 Laser Sensor (top)

Electronic Components

Robostix with Atmel Atmega 128 CPU

Robostix-Gumstix-NetMMC Sandwich

Gumstix with Intel XScale 400 CPU

Devantech SRF10 Ultrasonic Sensor

Manual Control vs. Autonomous Control

- Stabilization control needed only for roll, pitch, and yaw
- User recognizes significant attitude/altitude deviations (drift, wind, power leaks, ...)
- User recognizes true position, ground surface, and obstacles
- User performs full navigation and trajectory control

- Stabilization control needed also for **altitude** (90% thrust)
- Sophisticated sensing needed to recognize significant attitude/altitude deviations
- Sufficient **position** (GPS) and obstacle sensing needed
- Stabilization-independent
 trajectory controller needed

• Requirements:

- 4 independent controllers to stabilize roll, pitch, yaw, and altitude
- Controller period in the range of milliseconds
- Hard real-time software
- Reliable remote connection between JAviator and ground station
- Sufficient computing power for autonomous flight
 - Onboard navigation
 - Trajectory control
 - Obstacle recognition

Embedded System

Robostix Timing

Gumstix Timing

- Atmega-based C software
 - Time-triggered sensing and actuating
 - Fully deterministic controller behavior
- Exotask-based Java software
 - Real-time software infrastructure
 - Each exotask has its own memory space
 - Each exotask has its own garbage collector
 - Exotask system provides time-portability
 - No change of original Java semantics

Atmel Atmega 128

(Robostix Extension Board)

Intel XScale 400

(Gumstix Connex Board)

Control Software

System Library

Atmega 128 Library

Linux Real-Time Kernel

The Exotask Editor

First All-Java Flight

- Oct 4, 2006:
 - Spontaneous software test
 - System fully operational
 - First Javabased flight!

1st IBM Demo Session

- Oct 5, 2006:
 - Official demo flights with IBM
 - Real-time tracing of entire system

2nd IBM Demo Session

- May 24, 2007:
 - Demos with improved state-observer controller
 - 3-D environment added

- Hardware: JAviator version 2
 - Laser for altitude and additional electronics
 - CNC-machined rotor and connecting parts
 - Custom-built high-precision rotor blades
- Software: Trajectory controller
 - Carrier-phase-GPS-based position recognition
 - Ultrasonic-based acquisition of obstacle data
 - Fully autonomous navigation and control

Project Home Page: javiator.cs.uni-salzburg.at

• Published Paper:

J. Auerbach, D.F. Bacon, D.T. Iercan, C.M. Kirsch, V.T. Rajan, H. Röck, and R. Trummer. Java Takes Flight: Time-Portable Real-Time Programming with Exotasks. In *Proc. ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES)*. ACM Press, 2007.