The JAviator Flight Control System

Rainer Trummer

Computer Sciences Workshop '09
Department of Computer Sciences
University of Salzburg, Austria

Computational Systems Group

Introduction

- The JAviator Quadrotor
- Quadrotor Dynamics
- Thrust Dynamics
- Altitude Control
- Improvements
- Videos

The JAviator Quadrotor

The JAviator Quadrotor

The JAviator Quadrotor

Total diameter (over spinning rotors):
1.3 m

Empty weight (including electronics): 2.2 kg

Max lift capacity (flyable with 4.4kg): 5.6 kg

Quadrotor Dynamics: Basics

Quadrotor Dynamics: Basics

Quadrotor Dynamics: Basics

Roll/Pitch: 0°

Pitch angle: 5°

Pitch angle: 15°

Pitch angle: 25°

Pitch angle: 35°

Weight-dependent basic thrust

Weight-dependent basic thrust

Altitude from sonar sensor

Altitude measured by sonar sensor

Altitude from sonar sensor

Attitude-based altitude correction

Altitude measured by sonar sensor

Altitude from sonar sensor

Linear accelerations from IMU

Altitude from sonar sensor Linear accelerations from IMU

Altitude from sonar sensor Linear accelerations from IMU

Altitude from sonar sensor Linear accelerations from IMU

Velocity from Kalman filter

Altitude from sonar sensor Linear accelerations from IMU Velocity from Kalman filter

Flying the JAviator

Improvements

Hardware

- More sophisticated sonar sensor at 100 Hz
- IMU set to 100 Hz to match sonar frequency
- Motor signals with Fast PWM at 250 Hz

Software

- Controllers extended from PID to PIDD
- Acceleration term used for dampening
- More complex filtering incorporated

The Great Break-Through

Thank You!

Questions?